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The binary and triple collision terms of the quantum kinetic equation 
derived previously are analyzed in the weak coupling approximation. In 
this approximation the equation appears to be a nonlocal Markovian 
extension of the kinetic equation due to Uehling and Uhlenbeck. After 
linearization, its relationship with non-Markovian formulations found in 
the literature is studied. 
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1. I N T R O D U C T I O N  

In  the preceding paper,  ~1~ hereafter referred to as I, we have established a 
quan tum kinetic equat ion that  takes binary as well as triple collisions into 
account.  In  contrast  to  the classical equation,  (2~ where the collision kernels 
are operators  in phase space, the quan tum mechanical  kernels are ordinary 
functions. This is a definite advantage,  which makes a study of  the detailed 
analytic properties by per turbat ion methods  a feasibility. In  the present paper  
we make a start with this p rogram and evaluate the two- and three-particle 
collision terms up to second order  in the interparticle potential. 

Weak coupling approximat ions  have been considered by many  authors,  
using a multi tude o f  methods,  such as t runcat ion o f  the hierarchy, (a,4~ master 
equat ion approach,  (5~ Green 's  funct ion techniques, ~6-9~ projector formalism,(Z~ 
and others. (~,12~ A separate class consists o f  the theories (la,z~ that  are 
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a priori restricted to the linear response regime. We make contact with these 
by linearizing with respect to the equilibrium state. 

In a number of  the aforementioned theories (s-~':a~ the kinetic equation 
appears in a non-Markovian form, that is, the collision term is a time integral 
extending over the whole past history of the system. In our treatment, on the 
other hand, the kinetic equation is strictly Markovian. To resolve this 
apparent inconsistency, we note that in the weak coupling case the distribu- 
tion function in the second-order collision terms may he treated as if they had 
a free time evolution. It is then a simple matter to convert our Markovian 
equation into a non-Markovian form. 

The preceding argument implies that a non-Markovian collision term 
does not necessarily represent a memory effect. The deciding factor for that is 
the choice of the initial time. It is customary to situate it at time zero. One 
then finds a collision kernel containing a memory effect that vanishes for long 
times. In contrast, we impose the initial condition in the infinite past. As a 
consequence, the ensuing kinetic equation is Markovian at all times. 
Apparently, the initial condition at minus infinity automatically takes care of 
the asymptotic time limit. 

We examine further the relationship between the Markovian and 
memory kernel by making a Fourier-Laplace transform of  the linearized 
equation. This reveals that the Markovian kernel, which is only wave-vector- 
dependent, is not, as is sometimes stated, aS> the zero-frequency limit of the 
memory kernel. Actually, we find a dispersion relation which, in the weak 
coupling approximation, has a particularly simple form. No restriction on the 
wave-vector dependence is involved. This serves to show that in our scheme 
the Markovian limit and the hydrodynamic limit of small wave vectors are 
entirely disjunct operations. 

2. P E R T U R B A T I O N  E X P A N S I O N  

We recall that in paper I, formulas (11), (13), and (24), we have defined 
functions -in~b(n~Cn~'tr , p'~[p) by expanding the operator 

qb(p) = ( ih) - : (2zrh) -a~ d3u [a*(p - �89 + �89 (1) 

where // i  is the interaction Hamiltonian, with respect to normal ordered 
products of in-operators: 

qS(p) = ~ M1 Jf dap, ~ dap,,~ a)(.,,u , r  , P'~IP)a~(P")a~(P ' ' )  (2) 
~ I = 2  

We have used the short-hand notations p~ = p: ..... p~; dap '~ = dap: ... dap,~ 
and a:*~(p ~) = ah(p:) ... ah(p~). The in-operators were defined as 

ain(p) = U(0, - oo)a(p) U*(0, - oo) (3) 
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with U ( 0 , - o e )  the Moiler wave operator (I.16). Because we assume 
U(0, - oe )  to be unitary, they satisfy the (anti-) commutation relation 

+ , * , ~ ( 8 > ( p  
- -  ~ain(p )aln(P) = P') a1~(p)ain(p ) -- (4) 

where ~ is equal to one for bosons and to minus one for fermions. 
In the kinetic theory as developed in paper I the dynamical functions 

D(n) m are of prime importance since they effectively determine the collision 
term of the kinetic equation. They can be found by a systematic procedure 
based on perturbation theory. To that end we consider the quantity 

~'+(t, t0)q~(p) = U+(t, to)•(p)U(t, to) (5) 

where ~+(t, to) is the superoperator defined by the right-hand side. The time 
evoIution operator U(t, to) satisfies the integral equation (I. 14), whence 

ih ~tql+(t, to) = q/+(t, to)~( t )  (6) 

where the superoperator ~ ( t )  indicates the commutator with the interaction 
Hamiltonian in the interaction picture/tz(t).  The integral form of (6) is 

is ~+(t, to) = ~ - ~ dtl e-"tllq/+(tl, to);,~(q) (7) 
o 

By iteration we get the perturbation expansion <16> 

r = a t ,  ~, ( t , )  ... ~ , ( t l )  (8) 
n = O  t 0 ~'1~ 0 " ' "  "Jr  0 

where the convergence factors have been suppressed. 
We now write the identity 

�9 (p) = q/(0,-oo)q/+(0,--oe)qb(p) (9) 

Observing that in terms of q / the  definition (3) of the in-operators reads 

a~n(p) = q/(O, -oo)a(p) (10) 

we find with (8) and (9) the following perturbation series for the operator 
*(p):  

x [[...[Ore(p), Hx,~,(h)]...], Hz.m(t,)] (11) 

The operators Hz,m(t) and ~ ( p )  are identical to the corresponding operators 
Hz(t) and qS(p) as defined in (1.3) and (1), respectively, save for the replacement 
of  all a-operators by am-operators. The latter follow the free time development 
law as shown in (1.22). With the help of  (11) the expansion functions +m~<"> as 
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defined by the expansion (2) can be calculated up to any desired order of 
approximation. 

3. FIRST-ORDER A P P R O X I M A T I O N  

Let us consider the first-order approximation as it follows from (11): 

J2 = q ' i n ( p )  - ( i / h )  dr1  H,, ln( t l ) ]  (12)  

The calculation of the right-hand side is a straightforward exercise. Putting 
the in-construction operators in their normal order as in (2), we may identify 
the lowest order contributions to the functions qs~. As it turns out, we have a 

~b~2.1~ It reads first-order contribution to -lna5!2~, which we denote by =in . 

I)(2,1)(,.2 �9 
in , v  , p' lp) 

= (iA/Trah~)[3<a>(2P - P~' + P2' - P~ - P~)v(P2; 2p - p~', P2') 

- ~<a~(2P- Pz + P 2 -  P l ' -  p2 ' )v(2p-  pa,p2;p'~) + ( 1 ~ 2 ) ]  (13) 

The symbol (1 ~-* 2) indicates the preceding terms with the labels 1 and 2 
interchanged. The potential function v, which characterizes the interaction, 
is by definition a symmetric or antisymmetric function of both its first and 
second pair of variables. 

The calculation also yields a second order contribution 

p,2lp) : f daq2 [U<~>(p2. q2)q~X,a>(q2; P'alP) 
0)<2,2~(.2 . 

in ',It" , - 

- Ug'(q2; p'2)e~m(p2; q2/p)] (14) 

where it has been convenient to define a function 

U<D(p2; p,2) = 2~iA ~>(p2; p,2)v(p2; p,2) (15) 

with the notation 

27ri 3(_4)(p2; p,2) = 3(a)(p~ + P2 - Pz' - P2') (pO _ p}O) _ i~ (16) 

The energy p~/2rn has been indicated by pO. 
Finally, we find from the calculation the first nonvanishing contribution 

to dS!a) - - i n  

in ',It" , 

- U[l>(q, Pa; P'~)q~}X'~'(P~; q, Pa'lP)] (17) 
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The sum in this expression runs over all permutations of the variables Pl, P2, 
and Pa. In the lowest order approximation there are no contributions to the 
expansion (2) other than (13), (14), and (17). 

In paper I we also considered the operator 

r = (27rh)-af daua*(p - �89 + �89 (18) 

and the expansion to match 

2 if dap~ d3p, ~ r -- ~bin(P) = n = 2 ~ ~b~nn)(p n; p'n]p)a+~n(p'~)ain(p"~) (19) 

The first-order approximation gives rise to one coefficient function only, 
which is 

r p'2lp ) 
1 

= (Trh)3 [U<_~>(p2; 2p - p~', P2') - U}3)(2P - P~, P~; p,2) + (1 +-r 2)] 

(20) 

In the next section we shall see how the functions (13), (14), (17), and (20) 
determine the kinetic equation that is valid up to second order of the 
interaction strength. 

4. T W O - P A R T I C L E  C O L L I S I O N  T E R M S  

We now turn to the kinetic equation for the distribution (Wigner) func- 
t ionf(x ,  p, t) derived in paper I, Section 5. In the approximation considered 
above this equation becomes 

( ) f  j~2,m j~a.2~ (21) ~ + m 'V j~2.1) + + 

where the collision term has been divided into three distinct parts that will be 
discussed separately. 

The first two collision terms are quadratic in the distribution function. 
They may be written as 

j(2,,~) = dx2 ~ 'm)(x21x)  I-~ f (x~,  t), m = 1, 2 (22) 
Y = I  

where the phase-space point (x, p) is denoted by x. The functions &~2,m~ --in are 
Fourier transforms [cf. 0.34)] of the functions qbin(2'l) _.~nnd --ind)(2'2~ written out in 
(13) and (14), respectively. By substitution of the former one finds that j(2,~ 
is identical to the collision term that is obtained by applying the well-known 
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Hartree-Fock factorization rule to the quantum mechanical hierarchy3 iv> 
For systems that are spatially uniform the collision term vanishes. 

In order to get some insight into the significance of the collision term (22) 
for rn = 2, we make the change xj--> x + xj in the spatial integration 
variables and expand the distribution functions in a Taylor series around the 
point x: 

f ( x  + xj, pj, t) = f ( x ,  pj, t) + xj-Vf(x, p~, t) + ... (23) 

As the distribution function f is supposed to describe the macroscopic be- 
havior of the system, we expect the corrections arising from the second and 
higher order terms to be small. If they are omitted, the collision term jc2,2~ 
reduces to the localized form 

f j~2.2> = (2rrh)6 dapa =inm(2'2>~'~2",~- , p~lp) l - I f (x ,  pj, t) (24) 
j = l  

where the integral kernel is given by expression (14) with Pl' and P2' put equal 
to Pl and P2, respectively. With the help of the formulas (I.4), (13), (15), and 
(16) and the well-known identity 

lim [(a - ie) -1 - (a + ie)-q = 2~ri 8(a) (25) 
E'-+0 

the diagonal part of (14) may be shown to become 

.~.2,(p2; p=[p) = �89 f dap,2 W(m(p21p,2 ) 

x [a<3~(p - p , ' )  - 8~3)(p - p , )  + (1 - +  2)1 ( 2 6 )  

The symbol W <2) stands for 

W<2'(p2lp '2) -- 2(2,0~h 2A2 8(4)(p~ + p2 - p l '  - p2 ' ) lv(p '2 ;  p=)[ 2 (27) 

This expression, wherein 8~4~(p) indicates 8(p ~ 8<a)(p), is the quantum me- 
chanical transition rate evaluated in the Born approximation. Inserting (26) 
into (24), one recognizes the latter as the familiar Boltzmann collision term. 
In its nonlocal form (22), it takes the duration and spatial extent of the 
collision process into account. 

. T H R E E - P A R T I C L E  C O L L I S I O N  T E R M  

The third collision term on the right-hand side of (21) involves, in 
contrast to the ones discussed above, three distribution functions: 

j(a.2~ = _f dx a [~)~a.2~(xalx ) 

4',n (x  [y )* i~  (y, xdx)]~-[ f(xj, t) - -  2 d y  -(2,1~ 2 " (~,1> 
S = I  

(28) 
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It is most easily analyzed by replacing the +in and ~ln functions by their 
momentum-space counterparts ~bi~ and ~in [cf. (I.34)]. The three-particle 
collision term (28) may thus be cast into the form 

j<a,2> = f dx 3 f d3u a q0~a,2,(p3 _ �89 pa + �89 

8 

x I-I  [exp(-iuj.x/h)]f(x + xj, p~, t) (29) 
f=J_  

Here the subscript C has been used to indicate the combination 

(I),a.2)(na. p,aIp)c = q)~,2)(pe; p,a]p) 
Ill \iV 

- 2(2~-h) 3 f d3q ~[~.~'(p~; p'~]q) 

x r + �89 Pa; q - �89 Pa'[P) (30) 

where v is an abbreviation for pl + p~ Pl' P2', and where ~b<2,~) rb<3,2> 
and ~}~'~> have been given in (13), (17), and (20), respectively. 

We proceed by inserting the expressions (17) and (20). We then find, 
noting that the function U(2 ~ as defined in (15) contains a delta function, that 
the first term at the right-hand side of (30) and the last term are quite similar. 
In fact, the latter and certain permutation terms of the former cancel. There 
remains 

~<a.2>(p3; p,31p)c = 2~ f d3q [U~(p2; q, p3 ' )~ '~ (q ,  Pa; p,2]p) 

- U<2~(q, p3; p,2)q~.~(p2; q, Pa'[P)] (31) 

with ~<2'z> given by (13). 
Expression (29), with (31) inserted, is the three-particle collision term 

evaluated up to order Z 2. In this order it only takes the presence of a third 
particle into account through the boson or fermion symmetry. This is most 
clearly seen in the local approximation in which we disregard the xj depen- 
dences of the distribution functions. The collision term (29) then becomes 

3 

Jz <a'2) = (2~'h) 9 f dSP a ~nd)(a'~(n~'~- , pa]p)c ~ f (x ,  p~, t) (32) 
f = l  

Putting p,a equal to pa in (31) we find, using (13), (15), (16), and (25), 

qb<a,2,(,~, f d*p, W(2~(p2lp , ' p~) P~[P) c ~7(27rh) -~ 

• [~a~(p - p~') - ~<~'(p - p~) + (p~', p~ --~ pa, p~)] (33) 

where W ~2~ is the transition rate (27). If  (33) is inserted into (32), the ensuing 
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expression is found to be identical to the three-particle collision term advanced 
by Uehling and Uhlenbeck as early as 19335 TM They obtained it from the 
Boltzmann collision term by the substitution of statistical factors appropriate 
to Bose or Fermi statistics. Here it arises as the weak coupling approximation 
to the quantum mechanical Choh-Uhlenbeck collision term. (~ 

6. L I N E A R I Z E D  E Q U A T I O N  

The kinetic equation discussed above is nonlinear in the distribution 
function. This feature makes the study of its properties an unpromising 
enterprise. If, however, the system is near its equilibrium state, the nonlinear 
equation may be replaced by an equation of evolution that is linear in the 
deviation from equilibrium. The latter is obtained by writing 

f (x ,  p, t) = foq(P) + ~(x, p, t) (34) 

where f~q(p) is the Bose-Einstein or Fermi-Dirac distribution function. We 
substitute the form (34) into the kinetic equation (21) with the collision terms 
as given by (22) and (29). Since we suppose the deviation from equilibrium to 
be small, we retain only the terms linear in h(x, p, t). It is convenient to 
express the result as an equation for the Fourier transform 

h(k, p, t) = (2~rh)-8f d a x  exp( - ik .x /h )  h(x, p, t) (35) 

After some manipulations we obtain the linear kinetic equation 

(ih~, - p . k / r n ) h ( k ,  p, t) 

-= dap ' I<"'m)(p']k, p)h(k, p', t) (36) 
r ~ = 2  m 1 

The (time-independent) integral kernels are given by 

p) = 2(27r)6hTi ~ d3p l  Aq(pl)q~i2~,~ ' (p ' - �89 pl; p' + tk,  Pl I(2.m>(p']k, I p) 
t ?  

(37) 

where m can take the values one and two, and 

IC3.2>(p'lk , p) = (2 )oh oif dap2f~q(pl)f~(p2) 

x [2qb~na'2)(p' - lk ,  p2; p, + lk,  p21p)c 

~s,2)(,~2 p, _ �89 p2, p, + -~n , r ,  + IklP)c ] (38) 

Since the deviation function ~(x, p, t) is real, the integral kernels have the 
property 

I<~.m>(p,[k ' p) = __ I<n,m>*(p' [ -- k, p) (39) 
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The kernels m a y  be expressed in terms o f  the potent ial  funct ion by 
inserting the explicit fo rms  (13), (14), and (31). In  the simple case that  the 
interact ion only depends on the distance between the particles, the potent ial  
funct ion m a y  be writ ten as 

v(p=; p'=) = �89 - p, ' [ )  +  v(Ipa - p ; I ) ]  (40) 
where v(k) is a real function. Fo r  an interact ion of  this kind the kernel  (37) 
reads for  m = 1 

l" 
I(2.1'(p'[k, p) = (2 hyaj d3plAq(pl  - �89 

x {[v([kl) + wv(]p - P'I)] ~(~>(P - Pa) 

- nv(]p - Pal) 3(~'(P - P')} - ( k ~  - k )  (41) 

Obviously,  it has the p rope r ty  (39) and vanishes if the system is uniform,  i.e., 
k = 0. The first te rm not  containing the factor  ~7 can be interpreted as a mean  
field contr ibution.  (6~ In  the classical limit it reduces to the linearized Vlasov 
collision kernel. The  addi t ional  terms represent  quan tum mechanical  
exchange effects, a3) 

For  the collision kernel  I (2,m we find in the same way 

I(2'2'(p'[k, p) = (2h)a=~a2if d3p 3 w(p', palp ) 
% 

• [Aq(pa �89 8~(p2,  " ' - P3,  P ,  Pa - k ) ]  - (c .c . ,  k ~  - k )  

(42) 

with 8 ~  as defined in (16) and with the abbrevia t ion  

w(p', pa[p) = [v(lp' - P2[) + ~Tv(tP' - P3])] 

• {[v([p - p']) + ~v([p -- pal)] [8(a)(p - P2) + ~7 ~(a)(p _ Pa)] 

- (P2, Pa +-+ P', P l ) }  (43)  

I t  turns out that  the collision kernel  I (a'2> follows f rom the expression (42) for  
I (2'~> by the prescr ipt ion 

f~q(pl - �89 

--> (2~rh)a~[2f~q(pa - �89 + �89 - f ~ ( P 2  + �89 + �89 (44) 

Fo rmula  (42) shows tha t  in general the interact ion between the particles 
cannot  be described by an energy-conserving t ransi t ion probabil i ty.  If, 
however,  k = 0, the 8~) funct ion inside the square brackets  m a y  be combined  
with its complex conjugate into a delta funct ion tha t  conserves m o m e n t u m  as 
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well as energy. One may verify that then I (2'2~ and ica,2) reduce to the linearized 
Boltzmann and Uehling-Uhlenbeck collision kernels, respectively. 

7. M E M O R Y  K E R N E L  

The kinetic equation (36) is clearly Markovian. It can, however, also be 
brought into a non-Markovian form. To this end we note that, within the 
weak coupling approximation and with regard to the collision terms that are 
quadratic in the interparticle potential, the deviation function h(k, p', t) may 
be treated as if it develops freely in time: 

h(k, p', t) = exp(-ip'.k.r/mh) h(k, p', t - ~-) (45) 

Making use of this property, we may write 

f dap I(2'2)(p'lk, p)h(k, p', t) 

f = = dap ' dr IC2,2~(P'lk, p, r)h(k, p, t - r) (46) 

where the time-dependent kernel is equal to the time-independent one (42), 
save for the replacement 

2~r 3~)(p2, P3; P', Pl - k) 

h-1 ~ca)(p, + Pl - k - P2 - P3) 

x exp{i [(p' - �89 ~ + (Pl - �89 ~ - (P2 + �89 ~ - (P8 + {k) ~ + i@r/h} 

(47) 

The three-particle collision term may be transformed in a similar fashion. 
The important point to observe about the right-hand side of (46) is that 

the time integration extends to infinity. This feature has been introduced into 
the theory by choosing the time at which the initial correlations were neglected 
as minus infinity. [See, in particular, formulas (I. 16), (I. 19), (I.28).] The initial 
condition could alternatively have been imposed at time zero. One then would 
have found, instead of (46), a convolution integral with the integration 
extending to time t. In terms of Laplace-transformed quantities i (2,2) and 
we would then have 

dap ' d.r I<2,2'(p'[k, p, r)h(k, p, t -- r) 

= ~W-~[f da, ' i'2"2'(p'[k,p,z)'(k,p,z)l (48) 
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where ~ - 1  indicates the inverse Laplace transform. The z-dependent kernel 
follows f rom (42) via the substitution 

2~- 3~>(p2, Pa; P', Pl - k) 

-+ i~3) (p '  + P l  - k - p ~  - -  P a )  

x [(p' - �89 ~ + (p~ - �89 ~ - (P2 + �89 ~ - (P3 + �89 ~ + z + &]-i  

(49) 

A memory kernel having this structure has recently been obtained by 
Boley and Smith. <la> They surmise that this memory kernel furnishes a de- 
scription of the short-time behavior of  systems that are carefully prepared in 
accordance with the imposed initial condition. The asymptotic initial con- 
dition, on the other hand, applies to any system, whatever its initial state, 
provided that the correlations decay more rapidly in time than the one- 
particle distribution function. The restriction lies in the fact that the ensuing 
kinetic equation pertains to the long-time behavior of  the system. 

In the long-time limit the two alternative initial conditions should yield 
the same results. The associated value of  z is found by observing that, due to 
the definition (16) of  ~ ,  the left- and the right-hand sides of  (49) become 
identical for the value z = p ' .k /m.  We thus have the equality 

/<2"2~(p'lk, p, z = p ' .k /m)  = I(2'2~(p'lk, p) (50) 

between the memory and Markovian kernels. 
It  should be noted that  no assumption about  the wave-vector dependence 

has been made. If, in addition, the wave vector is required to be small, the 
right-hand side reduces to the linearized Boltzmann collision kernel, as 
already mentioned. 
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